Statseminars Stat & Data Science Seminar, Speaker: Aaditya Ramdas, Monday, 2/26 @ 4:15pm

DEPARTMENT OF STATISTICS AND DATA SCIENCE SEMINAR

Date: Monday, February 26, 2018

Time: 4:15pm – 5:15pm

Place: 24 Hillhouse Avenue, Rm. 107

Seminar Speaker: Aaditya Ramdas

University of California, Berkeley, http://people.eecs.berkeley.edu/~aramdas/

Title: Interactive algorithms for multiple hypothesis testing

Abstract: Data science is at a crossroads. Each year, thousands of new data scientists are entering science and technology, after a broad training in a variety of fields. Modern data science is often exploratory in nature, with datasets being collected and dissected in an interactive manner. Classical guarantees that accompany many statistical methods are often invalidated by their non-standard interactive use, resulting in an underestimated risk of falsely discovering correlations or patterns. It is a pressing challenge to upgrade existing tools, or create new ones, that are robust to involving a human-in-the-loop. In this talk, I will describe two new advances that enable some amount of interactivity while testing multiple hypotheses, and control the resulting selection bias. I will first introduce a new framework, STAR, that uses partial masking to divide the available information into two parts, one for selecting a set of potential discoveries, and the other for inference on the selected set. I will then show that it is possible to flip the traditional roles of the algorithm and the scientist, allowing the scientist to make post-hoc decisions after seeing the realization of an algorithm on the data. The theoretical basis for both advances is founded in the theory of martingales : in the first, the user defines the martingale and associated filtration interactively, and in the second, we move from optional stopping to optional spotting by proving uniform concentration bounds on relevant martingales.

This talk will feature joint work with (alphabetically) Rina Barber, Jianbo Chen, Will Fithian, Kevin Jamieson, Michael Jordan, Eugene Katsevich, Lihua Lei, Max Rabinovich, Martin Wainwright, Fanny Yang and Tijana Zrnic. Bio : Aaditya Ramdas is a postdoctoral researcher in Statistics and EECS at UC Berkeley, advised by Michael Jordan and Martin Wainwright. He finished his PhD in Statistics and Machine Learning at CMU, advised by Larry Wasserman and Aarti Singh, winning the Best Thesis Award in Statistics. A lot of his research focuses on modern aspects of reproducibility in science and technology — involving statistical testing and false discovery rate control in static and dynamic settings.

4:00 p.m. Refreshments in Common Room, 24 Hillhouse Avenue

4:15p.m. – 5:15p.m. Seminar, Room 107, 24 Hillhouse Avenue

For more details and upcoming events visit our website at
http://statistics.yale.edu/ .

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s